A fast-marching like algorithm for geometrical shock dynamics

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A fast-marching like algorithm for geometrical shock dynamics

We develop a new algorithm for the computation of the geometrical shock dynamics model (GSD). The method relies on the fast-marching paradigm and enables the discrete evaluation of the first arrival time of a shock wave and its local velocity on a cartesian grid. The proposed algorithm is based on a second order upwind finite difference scheme and reduces to a local nonlinear system of two equa...

متن کامل

Geometrical shock dynamics for magnetohydrodynamic fast shocks

We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlin...

متن کامل

Shock wave focusing using geometrical shock dynamics

A finite-difference numerical method for geometrical shock dynamics has been developed based on the analogy between the nonlinear ray equations and the supersonic potential equation. The method has proven to be an efficient and inexpensive tool for approximately analyzing the focusing of weak shock waves, where complex nonlinear wave interactions occur over a large range of physical scales. The...

متن کامل

A fast marching algorithm for the factored eikonal equation

The eikonal equation is instrumental in many applications in several fields ranging from computer vision to geoscience. This equation can be efficiently solved using the iterative Fast Sweeping (FS) methods and the direct Fast Marching (FM) methods. However, when used for a point source, the original eikonal equation is known to yield inaccurate numerical solutions, because of a singularity at ...

متن کامل

A Generalized Fast Marching Method for Dislocation Dynamics

In this paper, we consider a Generalized Fast Marching Method (GFMM) as a numerical method to compute dislocation dynamics. The dynamics of a dislocation hyper-surface in R (with N = 2 for physical applications) is given by its normal velocity which is a non-local function of the whole shape of the hyper-surface itself. For this dynamics, we show a convergence result of the GFMM as the mesh siz...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2015

ISSN: 0021-9991

DOI: 10.1016/j.jcp.2014.12.019